ttok by simonw
211 downloads this week Star
README source code
Count and truncate text based on tokens
Large language models such as GPT-3.5 and GPT-4 work in terms of tokens.
This tool can count tokens, using OpenAI's tiktoken library.
It can also truncate text to a specified number of tokens.
See llm, ttok and strip-tags—CLI tools for working with ChatGPT and other LLMs for more on this project.
Install this tool using pip
:
pip install ttok
Or using Homebrew:
brew install simonw/llm/ttok
Provide text as arguments to this tool to count tokens:
ttok Hello world
2
You can also pipe text into the tool:
echo -n "Hello world" | ttok
2
Here the echo -n
option prevents echo from adding a newline - without that you would get a token count of 3.
To pipe in text and then append extra tokens from arguments, use the -i -
option:
echo -n "Hello world" | ttok more text -i -
6
By default, the tokenizer model for GPT-3.5 and GPT-4 is used.
To use the model for GPT-2 and GPT-3, add --model gpt2
:
ttok boo Hello there this is -m gpt2
6
Compared to GPT-3.5:
ttok boo Hello there this is
5
Further model options are documented here.
Use the -t 10
or --truncate 10
option to truncate text to a specified number of tokens:
ttok This is too many tokens -t 3
This is too
The --encode
option can be used to view the integer token IDs for the incoming text:
ttok Hello world --encode
9906 1917
The --decode
method reverses this process:
ttok 9906 1917 --decode
Hello world
Add --tokens
to either of these options to see a detailed breakdown of the tokens:
ttok Hello world --encode --tokens
[b'Hello', b' world']
This is the full list of available models and their corresponding encodings. Model names and encoding names are valid for the -m/--model
option.
-
gpt-4
(cl100k_base
) -
gpt-3.5-turbo
(cl100k_base
) -
gpt-3.5
(cl100k_base
) -
gpt-35-turbo
(cl100k_base
) -
davinci-002
(cl100k_base
) -
babbage-002
(cl100k_base
) -
text-embedding-ada-002
(cl100k_base
) -
text-embedding-3-small
(cl100k_base
) -
text-embedding-3-large
(cl100k_base
) -
text-davinci-003
(p50k_base
) -
text-davinci-002
(p50k_base
) -
text-davinci-001
(r50k_base
) -
text-curie-001
(r50k_base
) -
text-babbage-001
(r50k_base
) -
text-ada-001
(r50k_base
) -
davinci
(r50k_base
) -
curie
(r50k_base
) -
babbage
(r50k_base
) -
ada
(r50k_base
) -
code-davinci-002
(p50k_base
) -
code-davinci-001
(p50k_base
) -
code-cushman-002
(p50k_base
) -
code-cushman-001
(p50k_base
) -
davinci-codex
(p50k_base
) -
cushman-codex
(p50k_base
) -
text-davinci-edit-001
(p50k_edit
) -
code-davinci-edit-001
(p50k_edit
) -
text-similarity-davinci-001
(r50k_base
) -
text-similarity-curie-001
(r50k_base
) -
text-similarity-babbage-001
(r50k_base
) -
text-similarity-ada-001
(r50k_base
) -
text-search-davinci-doc-001
(r50k_base
) -
text-search-curie-doc-001
(r50k_base
) -
text-search-babbage-doc-001
(r50k_base
) -
text-search-ada-doc-001
(r50k_base
) -
code-search-babbage-code-001
(r50k_base
) -
code-search-ada-code-001
(r50k_base
) -
gpt2
(gpt2
) -
gpt-2
(gpt2
)
Usage: ttok [OPTIONS] [PROMPT]...
Count and truncate text based on tokens
To count tokens for text passed as arguments:
ttok one two three
To count tokens from stdin:
cat input.txt | ttok
To truncate to 100 tokens:
cat input.txt | ttok -t 100
To truncate to 100 tokens using the gpt2 model:
cat input.txt | ttok -t 100 -m gpt2
To view token integers:
cat input.txt | ttok --encode
To convert tokens back to text:
ttok 9906 1917 --decode
To see the details of the tokens:
ttok "hello world" --tokens
Outputs:
[b'hello', b' world']
Options:
--version Show the version and exit.
-i, --input FILENAME
-t, --truncate INTEGER Truncate to this many tokens
-m, --model TEXT Which model to use
--encode, --tokens Output token integers
--decode Convert token integers to text
--tokens Output full tokens
--allow-special Do not error on special tokens
--help Show this message and exit.
You can also run this command using:
python -m ttok --help
To contribute to this tool, first checkout the code. Then create a new virtual environment:
cd ttok
python -m venv venv
source venv/bin/activate
Now install the dependencies and test dependencies:
pip install -e '.[test]'
To run the tests:
pytest